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We give a theoretical explanation of the formation of the curved macropatterns in the recurrence plots of
sinusoidal signals, with nonstationarity in the phase or in the frequency. We show that the large time scales
observed and the curved structures are the artificial product of the discretization of the signal. Recurrence plots
are highly sensitive to the phase error introduced by the sampling, and we show that this characteristic can be
used to detect very small ��0.5% � phase or frequency shifts of the carrier frequency.
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I. INTRODUCTION

The recurrence plot �RP� is a visual tool for the investi-
gation of temporal recurrences in phase space, and was ini-
tially designed to display recurring patterns and nonstation-
arity in time series �1�. Recurrence is the most important
characteristic of chaotic systems, while nonstationarity may
arise from other reasons such as parameter drifting, time
varying driving forces, sudden changes in dynamics, etc. In
the recent years, RPs found a wide range of applications in
the time series analysis of nonstationary phenomena. For in-
stance, RPs have been used in the analysis of biological sys-
tems including neuronal spike trains �2�, electromyographic
data �3�, intercranial EEG recordings �4�, electrocadiograms
recording �5�, protein folding �6�, DNA sequences �7�, and
nonlinear phenomena in voice production �8�. The popularity
of RPs lies in the fact that the structures are visually appeal-
ing, allowing the investigation of high dimensional dynamics
by means of a simple two-dimensional plot.

For a better understanding and quantification of the recur-
rences, Webber and Zbilut have proposed a set of quantifica-
tion measures, which are mainly based on the statistical dis-
tribution of the line structures among the RP. By means of
the recurrence quantification analysis �9�, the RP can be used
as a tool for the exploration of bifurcation phenomena and
dynamics changes in even nonstationary and short time se-
ries. Some authors have also related the quantification mea-
sures to the invariants of the phase space, like the correlation
dimension and the largest Lyapunov exponent �10,11�.

Despite this, there is a lack in the literature regarding the
origin and the formation of the various patterns that can be
observed in a RP. In a recent work, Gao �12� identified the
main patterns visible in a RP, while Marwan focused his
attention on line structures �12�. A first attempt to character-
ize curved structures can be found in �13�, which shows how
complex patterns arise from simple deterministic signals
both of artificial and natural origin.

While this first paper provides the existence and the re-
producibility of the curved patterns, in this paper we inves-
tigate the nature of these structures, showing how the sam-

pling plays a fundamental role in the building of the patterns.
In this sense we will speak about interference patterns. We
will focus our attention on the understanding of the forma-
tion of the macrostructures and we will discuss how the in-
terference effect may be used to detect very slight nonsta-
tionarity such as frequency and phase shifts in periodic
signals, which, as already shown in �13�, are too small to be
detected by linear techniques like spectrograms and power
spectra.

II. THE RECURRENCE PLOT

Starting from the time series s�t�= �s1 , . . . ,sn�, the attrac-
tor of the underlying dynamics is reconstructed in a phase
space by applying the time delay vector method �14�. The
reconstructed trajectory can be expressed as a matrix
X= �x1 ,x2 , . . . ,xm�T where each row is a phase space vector
xi= �si ,si+T , . . . ,si+�DE−1�T�, with m=n− �DE−1�T. DE and T
are called embedding dimension and delay time.

The recurrence plot �RP� is a two-dimensional plot de-
fined by Ri,j

DE,�=���− �xi−x j � �, where xi,j �RDE are the em-
bedded vectors, i , j� �1, . . . ,m�, ��·� is the Heaviside step
function, and � is an arbitrary threshold. In the graphical
representation, each nonzero entry of Ri,j is marked by a
black dot in the position �i , j�. Since any state is recurrent
with itself, the RP matrix fulfills Ri,i=1 which hence contains
the diagonal line of identity �LOI�.

To compute a RP, a norm must be defined. We use the L�

norm because it is independent of the phase space dimension
and no rescaling of � is required. Furthermore, special atten-
tion must be given to the choice of the threshold �. There is
not a specific guideline for this estimation, but the noise level
of the time series must be taken into account. Values
suggested are some percentage of the diameter of the attrac-
tor �in any case, not more than 10%� �15�.

III. INTERFERENCE PATTERNS AND
MACROSTRUCTURES

For macropattern or macrostructure we mean an aggre-
gate of short lines parallel to the LOI forming structures
having some “familiar” shape. A simple example is given in
Fig. 1�a�, in which the recurrence plot of the signal
s�t�=sin�2�1000t� �sampled with a frequency of 11 025 Hz�
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is shown. Figure 1�b� is an enlargement, and shows clearly
that the macrolines are formed by a distribution of lines
spaced by the period of the signal, which is 11 025 sample
times. Therefore even if the RP has a simple origin, one
observes the coexistence of two time scales, the first one
related to the period of the signal, and the second one, much
larger, related to a frequency that cannot be retraced in the
signal itself.

Other macropatterns can be produced by adding different
types of modulations to a periodic signal. By adding a slight
linear increase of the frequency, the macrolines begin to
bend, producing macrohyperbolas �see Fig. 2�. Signals with
periodic modulation of the carrier frequency or of the phase
show circular and curved patterns. Figure 3�a� shows the
pattern formed by a periodically phase modulated signal,
while Fig. 3�b� shows the pattern formed by a periodically
frequency modulated signal.

All the recurrence plots of this section and of the succes-
sive section are computed using DE=2, T=3, �=0.05. With
different embedding dimensions and delay times the struc-
ture of the patterns is conserved. The LOI is removed.

IV. ORIGIN OF THE PATTERNS: THE ROLE OF THE
SAMPLING

Only a signal continuous in time has perfect recurrences.
The same signal recorded with a discrete sampling time gen-
erally will have imperfect recurrences, since the exact ones
may be omitted by the sampling. For a sinusoidal signal,
ideally, the RP should contain all lines parallel to the LOI
whose distances to the diagonal are an integer multiple of the
period. Due to the error introduced by the sampling, several
of these lines are broken or absent. In this sense, the thresh-

FIG. 1. The RP of the signal sin�2�1000t�, with fs=11 025 Hz. Here two time scales are clearly visible. The smaller is related to the
period of the signal, the larger is due to the interference effect.

FIG. 2. �a� Recurrence plot of the signal sin�2�1000t+2�50t2�. �b� sin�2�1000t+2�15t2�, fs=11 025 Hz.
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old � represents the tolerable phase mismatch between two
delay vectors in order to be still neighbors in the sense of
	xi−x j 	 ��. A recurrence happens when an integer multiple
of the sampling interval matches another integer multiple of
the period so that their difference modulo 2� is less than the
phase tolerance. It should be noticed that an increase of the
threshold joins the broken lines, but the others tend to
thicken and even if large values are used �60% or more of the
width of the phase space� the macrolines continue to exist.

The role of the error can be easily shown considering a
periodic signal s�t�=sin�2�fct�. Denoting the sampling fre-
quency fs, the discrete representation of the signal is sj
=sin�2�fc / fsj�. In the following we will indicate with p
= fs / fc the number of samples necessary for the representa-
tion of an oscillation. Normally p is not integer, therefore we
will write

p = � + �, � � N, � � R, 	�	 �
1

2
. �1�

In this framework an oscillation contains � samples, while in
every cycle a phase shift of � is introduced. The phase shift
is fundamental for the formation and the structures of the
patterns, and plays the most important role, since the sam-
pling introduces an intrinsic phase error, which is not visible
when the sampled signal is reconstructed in the time domain.

We will first focus on a nonmodulated sinusoidal signal,
which is helpful to set up the vocabulary and the framework
that will be useful when we will analyze modulated sinuso-
ids. In the next sections, the carrier frequency is fixed to fc
=1000 Hz, and the sampling frequency is fixed to
11 025 Hz, which is one of the standard sampling frequen-
cies for audio recording.

V. NONMODULATED SIGNALS

We consider the signal s�t�=sin�2�fct� and its numerical
representation:

sj = sin
2�
fc

fs
j� . �2�

If the signal is sampled according to the Shannon theorem,
its time representation is faithful. This is not true looking at
the position of the samples after one cycle. There is a shift
between a generic sample sj and its corresponding sj+� after
one oscillation. Following our formalism we will compute
through a numerical procedure the terms � and �:

p = � + �, � = round�p�, � = p − �, p,� � R, � � N ,

�3�

round�·� returns the nearest integer to p.
For this specific signal, �=11 samples and �=0.025.

Since ��0, there is a constant shift in the position of the
samples after every cycle. Figure 4 shows the path of the first
sample in time. This is done by downsampling the signal by
�=11 samples. If the representation of the signal were cor-
rect, the path would be a straight line. In this case, we ob-
serve that all the samples �si�i=1

11 �contained in the first oscil-
lation� go along a sinusoidal path, which has a frequency
much smaller than the original signal. Therefore the sam-
pling error introduces a new time scale which is only visible
considering the motion of the samples. The position of the
phase space vectors is modified too by the interference, as
shown in Fig. 5�a�.

Since the signal is periodic, one could expect that a ge-
neric state vector x0�i� �i=1, . . . ,�� is recurrent with all the
other vectors xk�i�, where xk�·� indicates the same state vec-

FIG. 3. �a� Recurrence plot of the signal sin�2�1000t+2� sin�2�10t��. �b� Recurrence plot of the signal sin�2�1000t
+2� sin�2�10t�t�. fs=11 025 Hz.
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tor after an arbitrary number of oscillations k.
If we represent in a three-dimensional space the time evo-

lution of the phase vectors, one would expect that every vec-
tor xk�i�, lying on the �x ,y� plane, moves on a straight line
along the z axis. Figure 5�a� shows that instead of a straight
line, the path is a helix.

Therefore, in the phase space, one can see that after a
certain number of oscillations k� the vector xk��0� is no more
recurrent with x0�0�, and that, in the mean time, x0�0� is
recurrent with xk��1�. As shown in Fig. 6, the cross-recurrent
effect is extended to all the � samples present in an oscilla-
tion. This gives an explanation of the macrolines observed in
the RP of a sinusoidal signal. When the recurrence between
x0�0� and xk��0� is missed, a new recurrence arises between
x0�0� and xk��1�. After 2k� oscillations, this new recurrence
is missed too, and x0�0� will be recurrent with x2k��2�. In
general, a certain sample x0�i�, contained in the first oscilla-
tion, will be recurrent with all the other � samples at time
intervals multiples of k�.

The RP shows then three scales, the first, and smallest, is
related to the main frequency of the signal, the second and
much larger, is an effect of the interference: it is the time
necessary to perform k� oscillations. The third scale, not vis-
ible, is the time at which x0�i� is again recurrent with itself,
i.e., with x�k��i�.

In order to understand the formation of the macrolines
and to compute their macrofrequency, we consider that the
signal has perfect recurrences only when

2�
fc

fs
j = 2k� ⇒ jk = �k + �k �4�

for k=1, j1= p. After a certain number of oscillations k�, the
product �k�=1 and jk��N �16�. Now, we consider k=1/� as
the number of cycles at which p again becomes an integer.
Under this assumption the number of samples at which a

new recurrence occurs is jk�=� /�+1. The macrofrequency
�MF� is now straightforwardly determined as

fM =
fs

jk�
= � fs�

� + �
� . �5�

With fc=1000, fs=11 025, using this formalism, the three
time scales are

�1� jc=�=11 samples, i.e., the time scale of the carrier
frequency fc;

�2� jk�=� /�+1=441 samples, i.e., the macrofrequency
fM =25 Hz of the lines; and

�3� j*= jcjk� samples, i.e., the recurrence time between the
same phase space vectors, whose MF is 2.27 Hz.

This is in agreement and extends our preceding results in
�13�.

In general, the value of the MF depends on fc and fs.
Fixing fs, we can compute the value of the MF for different

FIG. 4. The plot of the signal sin�2�fct�, with fc=1000 Hz and
fs=11 025 Hz, every 11 samples. This shows how the position of
the zeros changes with time. The other samples follow the same
sinusoidal path.

FIG. 5. �a� Motion of the state vector xk�0� in the phase space
��x ,y� plane� and in time �z axis�. Instead of moving on a straight
line, the path is a helix. �b� The path of the sample sk�0� in the time.
The circles indicate the time at which a new correct recurrence
happens.
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values of the carrier frequency. Figure 7 shows how the MF
varies with fc, while the sampling frequency acts as a scale
factor for the picture. The picture shows also how the value
of the MF increases and decreases dramatically, and, for
some specific values of fc, for which �=0, it shows strong
discontinuities. From the picture, one can see that the RP
representation of even periodic signals varies largely with the
frequency. Furthermore, for those frequencies which have a
large value of the MF, we observe a second order interfer-
ence. In this case we speak about macrofrequencies of order
n �fMn

�. By example, we know that the MF of a 1000 Hz
signal is 25 Hz. If we consider a signal at 3062 Hz, we find
that its MF is again 1000 Hz, therefore the RP will show
again the same macrostripes at 25 Hz, i.e., the value of the
MF shown by the RP is not univocal.

In general, a signal whose MF reaches high values cannot
be visualized because of the interference. Experimentally we
found that a good representation of the fM1

is available only

when the ratio 	= fM / fc
0.18, for higher values the stripes
in the RP should be referred to the fM2

or of higher order.
Figure 8 shows the first three orders of fMi�fc�

.

In the movie non_mod.avi �17� this effect is clearly
visible. It shows the evolution of the RP for the frequency
range fc� �1000,1200�, the green point shows the corre-
sponding fM1�fc�

.

VI. MODULATED SIGNALS

The computation of the MF given in Eq. �5� can be ex-
tended when the frequency or the phase of the signal varies
with time. We will then consider cases:

�1� linear increase of the frequency;
�2� periodic modulation of the phase; and
�3� frequency modulation.

We will consider fc as a function of time �or j�, and for the

FIG. 6. �Color online�. Recurrences of the
state vector x�0� with xik��i� �i=1, . . . ,��. Be-
cause of the motion of the vectors, x�0� recurs
with itself and with the other � vectors.

FIG. 7. The MF in function of fc for a nonmodulated sinusoid.
Despite the simplicity of the signal, the MF shows with the increase
of the frequency a nontrivial behavior. The frequencies correspond-
ing to �=0 correspond theoretically to fM =0.

FIG. 8. �Color online�. The orders of the MF �fMn
� for the un-

modulated signals.
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computation of the p�j� we will consider the instantaneous
frequency of the signal.

A. Linear increase of the frequency

The signal is sin�2�fct+2��t2� while the instantaneous
frequency is 1

2�
d�
dt = fc+2�t= fc�t�. Therefore the number of

samples becomes

p�j� =
fs

fc�j�
=

fs

fc +
2�j

fs

=
fs

2

fcfs + 2�j
. �6�

Now ��j� and ��j� can now be computed as functions of
time following Eq. �5�.

Figure 9 shows the variation of the MF for a signal with

fc=1000 and �=15. The value of the MF increases with
time, and this is in agreement with the RP shown in the
above plot.

The movie lin_mod.avi �17� shows the evolution of
the recurrence plot for increasing values of �� �0,100�: after
a fast change in the patterns, the shape of the RP becomes
more stable and assumes the characteristic hyperbolic shape.
It should be also noticed that the RP starts with a decreasing
MF and with a singular pattern, corresponding to very low
values of the MF. After that, there is a constant increase. As
a final remark, the movie shows some gapped patterns in the
structure �especially for high � values�. This may be related
to higher macrofrequencies orders.

B. Periodic phase shift

Considering s�t�=sin�2�fct+2� sin�2�fmt��, following
the same procedure we obtain

FIG. 9. The MF in function of the time, fc=1000, �=15.

FIG. 10. The MF in function of the time, fc=1000, fm=10.
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1

2�

d�

dt
= fc + 2�fm cos�2�fmt� , �7�

therefore the number of samples in cycle is

p�j� =
fs

fc + 2�fm cos
2�
fm

fs
j� . �8�

Figure 10 shows the strong variations of the MF for this class
of signals. The MF oscillates with frequency fm, this behav-

ior is also found in the spatial structure of the RP. The movie
per_mod.avi �17� shows how the RP evolves by changing
the modulating frequency fm.

C. Frequency modulation

Considering s�t�=sin�2�fct+2� sin�2�fmt�t�, we have
obtained

fc�j� = fc +
2�fm

fs
cos
2�

fm

fs
j� j + sin
2�

fm

fs
j� �9�

therefore

p�j� =
fs

fc +
2�fm

fs
cos
2�

fm

fs
j� j + sin
2�

fm

fs
j� . �10�

Figure 11 shows the evolution of the MF for the frequency
modulated signal. In comparison with Fig. 10, the maximum
values of the MF changes continuously in time. The different
behavior is confirmed if one looks to the movie
freq_mod.avi �17� that shows the evolution of the pat-
terns with the increase of the modulating frequency.

VII. CONCLUDING REMARKS

In this paper we have interpreted the origin of the curved
macrostructures that can be observed by computing the RP of
modulated sinusoids. Despite the simplicity of the signals,
the patterns were not trivial. By means of a nonmodulated
sinusoid, we set up a formal framework based on the fact that
the signal discretization introduces an intrinsic phase error �
whose effects are evident only in the phase space �or in the
time domain�. In this sense, the main point regarding the
origin of the macrostructures is that the large time scales do
not really exist in the signal. They are the artificial product of
the interference induced by the sampling of a continuous
signal, while the scale of the structures depends on the sam-
pling time.

In �13�, we stated experimentally that RPs were able to
detect phase or frequency shifts in the order of 5% of fc. We
can now theoretically state that the detection accuracy is one
order lower, i.e., 0.5%. In fact, the macrofrequency varies
largely even for a shift of 4 or 5 Hz �see, for example, Fig. 7
or the movie non_mod.avi �17��. The same conclusions
apply for modulated signals, whose pattern structure is com-
plicated by the time dependence of � and �.
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